Blind partial separation of underdetermined convolutive mixtures of complex sources based on differential normalized kurtosis

نویسندگان

  • Frédéric Abrard
  • Yannick Deville
  • Johan Thomas
چکیده

This paper concerns the blind separation of P complex convolutive mixtures of N statistically independent complex sources, with underdetermined or noisy mixtures i.e. P < N . Our approach exploits the assumed distinct statistical properties of the sources: P sources are non-stationary, while the others are stationary. Our method achieves the ”partial separation” of the P non-stationary sources. It uses a deflation procedure including extraction and coloration stages. The original criteria introduced in these stages use our differential source separation concept. They consist in optimizing the differential normalized kurtosis and differential power that we introduce. To optimize these criteria, we propose Netwon-like algorithms. Experimental results prove the efficiency of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A second-order differential approach for underdetermined convolutive source separation

This paper concerns the underdetermined case of the convolutive source separation problem, i.e. the situation when the number of observed convolutively mixed signals is lower than the number of sources. We propose a criterion and associated algorithm which, unlike classical approaches, make it possible to perform the separation of a subset of these sources by exploiting their assumed non-statio...

متن کامل

Differential Fast Fixed-Point BSS for Underdetermined Linear Instantaneous Mixtures

This paper concerns underdetermined linear instantaneous blind source separation (BSS), i.e. the case when the number P of observed mixed signals is lower than the number N of sources. We propose a partial BSS method, which separates P supposedly non-stationary sources of interest one from the others (while keeping residual components for the other N −P , supposedly stationary, ”noise” sources)...

متن کامل

Underdetermined blind separation of sparse sources with instantaneous and convolutive mixtures

We consider the underdetermined blind source separation problem with linear instantaneous and convolutive mixtures when the input signals are sparse, or have been rendered sparse. In the underdetermined case the problem requires solving three subproblems: detecting the number of sources, estimating the mixing matrix, and finding an adequate inversion strategy to obtain the sources. This paper s...

متن کامل

Underdetermined Convolutive Blind Source Separation via Time-Frequency Masking

In this paper we consider the problem of separation of unknown number of sources from their underdetermined convolutive mixtures via time-frequency (TF) masking. We propose two algorithms, one for the estimation of the masks which are to be applied to the mixture in the TF domain for the separation of signals in the frequency domain, and the other for solving the permutation problem. The algori...

متن کامل

Separating Underdetermined Convolutive Speech Mixtures

A limitation in many source separation tasks is that the number of source signals has to be known in advance. Further, in order to achieve good performance, the number of sources cannot exceed the number of sensors. In many real-world applications these limitations are too restrictive. We propose a method for underdetermined blind source separation of convolutive mixtures. The proposed framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008